The College’s Current Position

The American College of Preventive Medicine (ACPM) supports an evaluation prior to participating in high school and collegiate sports using a standardized history and physical (H&P) (i.e., using standardized items as developed by the American Heart Association [AHA] to ensure uniformity and consistency in risk factor assessment; Table 1). ACPM recommends against routine screening for potential sudden cardiac death (SCD) with electrocardiogram (ECG), echocardiography, and genetic testing in individuals without personal risk factors. The recommendations by ACPM address only mass screening approaches to detecting SCD and are not targeted toward individuals who may be identified by their healthcare provider as “above average” risk who may benefit from additional testing with the modalities mentioned above. ACPM supports the adoption of the National Heart, Lung, and Blood Institute (NHLBI) Working Group research agenda to evaluate the effectiveness of any screening program in reducing SCD, its cost–benefit ratio, and its impact on health outcomes (Table 2). The full-length version of the current article can be found on the ACPM website (www.acpm.org/?page=Policy_Statement).

Background

The risk of sudden cardiac death among high school athletes in U.S. is 0.7/100,000 person-years. The incidence of deaths among athletes due to cardiovascular collapse is twice that caused by trauma associated with sports. SCD is more common in men than in women at a ratio of 5:1 to 9:1. White athletes appear to be more affected than other races (55% vs 45%); however, the incidence of SCD due to hypertrophic cardiomyopathy is higher in African-American athletes. In 30%–50% of sudden cardiac deaths, it is the first clinically identified expression of heart disease.

The most common cause of SCD in young athletes in U.S. is hypertrophic cardiomyopathy (26%–36%) followed by anomalous origin of the coronary artery (17%). Other causes of SCD include dilated cardiomyopathy; Wolff-Parkinson-White syndrome (pre-excitation syndrome; WPW); Lénegre conduction disease (idiopathic progressive cardiac conduction disease); long- and short-QT syndromes; and Brugada syndrome, an inherited cardiac arrhythmia syndrome.

Supporting Evidence/Areas of Incomplete or Lacking Data

Studies addressing the efficacy of screening with clinical outcomes are currently lacking, and the utility of specific screening modalities remains unclear. An H&P developed by the AHA, which includes 12 criteria comprising personal and family history and a physical examination, is widely used, although opinions differ about its usefulness. Although an H&P costs less, requires minimal resources, and is efficient to administer, it has low sensitivity in detecting hypertrophic cardiomyopathy and other asymptomatic cardiac diseases. Another limitation is the poor utilization of a standardized H&P for pre-participation sports evaluation.

Implementing routine ECG screening to detect signs of cardiac disease to prevent SCD is also controversial.
ECG has been shown in some studies to be more sensitive than H&P in detecting underlying cardiac conditions known to cause SCD.\(^{11,12}\) However, the false-positive rate is higher for screening with ECG and H&P as compared to H&P alone.\(^{13}\) In an Italian pre-participation study, ECG was shown to detect 77% more hypertrophic cardiomyopathy than H&P alone.\(^{14}\) Normal variations in ECG may result in low specificity for cardiac disease in the population of athletes.\(^{15}\) RCTs and long-term prospective cohort studies are lacking in determining the utility of ECG as a screening tool to prevent SCD. A recent study in Israel demonstrates that pre-participation programs involving routine ECG testing and physical examinations do not reduce mortality rates or cardiac arrest.\(^{16}\)

Studies that directly evaluate ECG screening and improved health outcomes are lacking. A limited number of studies suggest that combining H&P and ECG screening for SCD may be cost effective. An Italian cost-effectiveness analysis of 33,735 athletes, using a more conservative approach (10% of affected athletes would live an additional 20 years), estimated the cost per year of life saved at approximately $20,000 for the Italian model (H&P and ECG) and about $53,350 for the U.S. model (H&P alone).\(^{17}\) The AHA estimates the cost of mass ECG screening, followed by echocardiogram and other indicated testing, to be $2.0 billion for 10 million middle and high school athletes.\(^{1}\) Pending further prospective studies involving U.S. participants, the cost effectiveness of routinely combining H&P and ECG in cardiovascular pre-participation screening in students cannot be conclusively determined.

Recommendations of Other Societies

The American Heart Association: Recommends cardiovascular pre-participation screening with a focused H&P to identify or raise the suspicion of those cardiovascular diseases known to cause sudden cardiac death or disease progression. The AHA recommends against ECG as universal screening because of its low specificity and costly additional workups.\(^{18-20}\)

European Society of Cardiologists: Recommends screening all young competitive athletes with a complete H&P and 12-lead ECG.\(^{21,22}\)

International Olympic Committee: Recommends a systematic cardiovascular evaluation (including 12-lead ECG) for all young competitive athletes.\(^{21}\)

American College of Sports Medicine: Supports pre-participation H&P without routine ECG for athletes.\(^{23}\)
Table 2. Recommendations of the NHLBI Working Group to address the identified knowledge gaps in evaluating screening for SCDY

<table>
<thead>
<tr>
<th>Epidemiology and etiology of SCDY</th>
<th>Develop an SCDY registry to prospectively estimate the incidence of SCDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform case–control studies using registry-defined cases to identify risk factors for SCDY</td>
<td></td>
</tr>
<tr>
<td>Performance of the screening methodology in the target population</td>
<td>Perform pilot ECG screening studies to test the characteristics of the ECG in target populations</td>
</tr>
<tr>
<td>Perform comparative effectiveness studies to determine the incremental value of various screening methodologies, including history and physical examination, ECG, echocardiogram, and genetic testing</td>
<td></td>
</tr>
<tr>
<td>Management of asymptomatic heart disease identified by ECG screening</td>
<td>Develop evidence-based management strategies for asymptomatic patients</td>
</tr>
<tr>
<td>Evaluate risk stratification, prevention, and therapeutic strategies</td>
<td></td>
</tr>
<tr>
<td>Use novel study designs and innovative recruitment strategies when studying low-prevalence diseases</td>
<td></td>
</tr>
<tr>
<td>Impact of a screening program</td>
<td>Evaluate the impact of a screening program on individuals and families using quality-of-life studies and patient-preference measurements</td>
</tr>
<tr>
<td>Use decision analysis to evaluate overall effectiveness of a screening program, as well as cost and resource utilization</td>
<td></td>
</tr>
<tr>
<td>Other resources to facilitate research</td>
<td>Redefine the diagnostic criteria for the long-QT syndrome in the genetic era</td>
</tr>
<tr>
<td>Define ECG norms in the U.S. population, taking into account demographic variability</td>
<td></td>
</tr>
</tbody>
</table>

EKG, electrocardiogram; NHLBI, National Heart, Lung, and Blood Institute; SCDY, screening for sudden cardiac death in the young

Rationale for the College’s Current Position

The American College of Preventive Medicine acknowledges that studies addressing the efficacy of screening with clinical outcomes are lacking and that the utility of specific screening modalities remains unclear. However, at the present time, the H&P is the most widely used modality for pre-participation evaluation despite its limited sensitivity in detecting certain cardiac conditions. Promoting an H&P using standardized items as that developed by the AHA will ensure uniformity and consistency in risk factor assessment (Table 1).1

The authors would like to acknowledge the assistance of the ACPM Prevention Practice Committee in developing this position statement, the ACPM Board of Regents for their additional comments and final approval of the document, and ACPM staff member Andrea Lowe, MPH, CPH, for her assistance in submitting this manuscript.

The following members of the ACPM Prevention Practice Committee participated in the development of this Position Statement: Gershon Bergeisen, MD, FACP, Michael T. Compton, MD, MPH, FACP, Tom Houston, MD, FACP, Prema Mona Khanna, MD, MPH, Randall S. Stafford, MD, PhD, FACP

No financial disclosures were reported by the authors of this paper.

References

www.ajpmonline.org

Did you know?
You can personalize the AJPM website to meet your individual needs.
Visit www.ajpmonline.org today!